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1 Summary 

The immobilization of catalysts permits both facile separations from the product avoiding 

tedious purification as well as easy recycling of the catalyst. The plasma‐assisted catalyst 

immobilization has drawn significant attention due to its coating with the direct attachment 

on the surface without the need of supported substrates. So far, there is only a limited 

number of research done with immobilization of catalysts using plasma techniques. 

In the last decade the valorization of CO2 into useful products gained much interest and 

therefor the synthesis of cyclic carbonates from epoxides and CO2 is a prominent example. In 

this context we designed and synthesized phosphonium salts, and immobilized them on the 

surface of TiO2, FeO and SiO2 by using amorphous hydrogenated carbon thin films generated 

from plasma techniques. After preliminarily study, SiO2 was found to be the best support, 

the heterogeneous catalyst was prepared with plasma treatment, and analysed with 

elemental analysis, solid state NMR, SEM and EDX. The immobilized phosphonium salt 

catalyst showed very good activity in the cycloaddition of CO2 to epoxides, and offered a 

variety of substrate scope for the conversion of epoxides under mild conditions. 

Furthermore, the catalyst recycling was achieved for the first time in the plasma‐assisted 

immobilization of catalysts. In conclusion we developed an efficient immobilized catalytic 

system operating under mild conditions for terminal and internal epoxides, and succeeded in 

the recycling of the catalyst, which was immobilized with plasma techniques for the first 

time. 

 
2 Introduction and aim of the project 

Amorphous hydrogenated carbon (a‐C:H) thin films generated with plasma techniques are 

very attractive due to their chemical inertness, high density, thermal stability, low friction, 

high wear resistance, high electrical resistivity and hardness.1‐2 They are investigated as 

protective coatings for windows3, antireflective coatings for crystalline silicon solar cells4, for 

biomedical applications5 and wear resistant coatings for tools6. Interestingly, an alternative 

application of the amorphous hydrogenated carbon thin films could be the immobilization of 

catalysts. The biggest advantage of this process is, that polymers can be directly attached to 

a desired surface while the chains are growing, which reduces steps necessary for other 

coating processes. So far, there is only a limited number of research done regarding 

immobilization of catalysts using plasma polymers. 7‐8, 9 And there are also several examples 

concerning plasma immobilization techniques in biology.10,11,12 A crucial point in the 

development of environmentally benign processes is the catalysts separation and recycling. 

Beside many other possibilities for green separation techniques, the immobilization of 

catalysts permits both facile separations from the product avoiding tedious purification and 
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isolation steps as well as easy recycling of the catalyst.13‐15 Organocatalysts are cheap, 

nontoxic, and bench‐stable organic molecules that do not necessarily require inert reaction 

conditions.16 A significant benefit of organocatalysts is undoubtedly the carbon‐based 

scaffold associated with high potential of structural modification and catalyst tuning, 

especially in terms of catalyst immobilization.17‐19 The atom economic addition of carbon 

dioxide to epoxides yielding cyclic carbonates is an interesting and frequently studied 

reaction since those products might be utilized as green solvents, synthetic building blocks 

or plasticizers.20‐22 Lately, highly active OH–functionalized organocatalysts have been 

reported for the synthesis of cyclic carbonates.23‐27 The superior activity of these catalysts is 

attributed to the epoxide activation and the stabilization of intermediates by hydrogen 

bonding. The development of bifunctional P‐based catalyst systems has been intensively 

studied in our group.28‐31 We are especially interested in the design and application of 

bifunctional phosphonium salts as recyclable catalysts. One method for obtaining reusable 

catalyst systems is the immobilization of the phosphonium salt on an organic or inorganic 

support. Herein, we report our studies on the use of plasma techniques for polymerizing and 

thus immobilizing suitable P‐based organocatalysts on titanium dioxide, iron oxide and silica 

(Fig. 1, a), as well as on immobilized catalysts activity investigation and recyclability 

evaluation. 

 
 
 

a) 
 
 
 
 
 
 
 

 
b) 

 
 
 
 

 
Figure 1. a) Concept of immobilization of phosphonium salt catalyst using plasma 

techniques. b) Prepared homogeneous v.s. heterogeneous catalysts. 
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The goal of the kickoff project H‐POP is to prepare heterogeneous phosphorus based 

organocatalysts by using plasma techniques, and test the activities of immobilized catalysts, 

as well as the recycling. The homogeneous catalysis is often highly efficient, however, the 

separation and recovery of the catalyst from the product is usually difficult. The 

heterogeneous catalysis offers the possibility of catalyst recover with general separation 

processes, for instance, the filtration, and then the catalyst could be reused in the catalytic 

system. In this context, novel suitable P‐based organocatalysts were designed and 

synthesized for the polymerization and immobilization by using plasma techniques. 

 
3 Results and discussion 

Bifunctional phosphonium salt bearing a hydroxyl group in the 2‐position proved to be a 

superior structural motif in the cycloaddition of CO2 and epoxides to form cyclic carbonates. 

We envisioned that an allyl substituent might allow the subsequent immobilization using 

plasma‐enhanced polymerization. In this case, we designed and synthesized bifunctional 

phosphonium salt catalysts 1 and 2 by allylation of 2‐(diphenylphosphanyl)phenol with allylic 

halides. Based on our previous study, the bromide and iodide catalysts represent the basic 

bifunctional structures, the –OH functional group may facilitate the activation of the epoxide 

by the additional hydrogen bonding. Since after the polymerization of the catalysts, the alkyl 

substituted phosphonium salts will be obtained, 3 and 4 were also synthesized for 

comparison of the activity. (Scheme 1) 

Scheme 1. Synthesis of phosphonium bromide and iodide catalysts. 
 

The four catalysts were tested in the model reaction of 1,2‐butylene oxide with CO2 to 

generate the cyclic carbonate with 1 mol% catalyst loading at 90 °C for 2 h (p(CO2)= 1.0 

MPa). The allyl‐substituted phosphonium salts (either the anion is bromide or iodide) 

showed similar activity, with the generation of 68% (3) and 67% (4) (Table 1, entries 1 and 2) 

yield of 1,2‐butylene carbonate. The propyl bromide phosphonium salt was slightly less 

active, 40% yield of 1,2‐butylene carbonate was obtained (Table 1, entry 3). The propyl 

iodide catalyst was proved to be the best under these reaction conditions, 1,2‐butylene 
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carbonate was converted with 83% yield (Table 1, entry 4). With these preliminary results, 

phosphonium salt 2 was chosen as the model catalyst to employ in the polymerization, thus 

immobilization with plasma techniques. 

 
Table 1 Catalyst screening and parameter optimization for the conversion of 1,2‐butylene 

oxide in homogeneous system. 
 

 

Entry Catalyst Cat. Loading / mol% Yield 6aa / % 

1 1 1 68 

2 2 1 67 

3 3 1 40 

4 4 1 83 

Reaction conditions: 45 cm3 stainless‐steel autoclave, 1 equiv 5a (13.9 mmol), 1 mol% catalyst, solvent‐free. 
aYields were determined by 1H NMR with mesitylene as internal standard. 

 

TiO2, FeO and SiO2 were chosen as potential supports. Initially we tested the activities of 

supports and the impregnated catalysts in the model reaction by using 1,2‐butylene oxide. 

To our delight, no activity was observed with pure supports, and moderate to good yields of 

1,2‐butylene carbonate were obtained with impregnated catalyst. Subsequently we tested 

the plasma immobilized catalyst under the standard reaction conditions. Also in this case 

very nice activities were obtained with those three supports. (More details see in Appendix 

table A1.) To evaluate the recyclability of these three plasma immobilized catalysts, after the 

first run, the catalysts were simply filtered off and reused in the second run. As shown in 

Figure. 2, for the first run, catalysts 16 and 18 converted 1,2‐butylene oxide into the 1,2‐ 

butylene carbonate in more than 93% yield, 17 also gave 72% yield. With the second run, 16 

gave 1,2‐butylene carbonate with 56% yield, 17 only generated the product with 2% yield, 

and 18 still gave quantitative yield, extraordinarily. 

After we had the optimized catalyst preparation conditions, more catalyst were prepared 

supported by SiO2 and employed in the model catalytic reaction condition optimizations. A 

variety of epoxides were tested in this reaction conditions. As shown in Scheme 2, the 

aliphatic substituted terminal epoxides were converted into the carbonates with 

quantitative yields (a–d). Epichlorohydrin (e) was converted to the respective carbonate e in 

a good yield of 84%. With 24 h, 92% yield was obtained when the aryl substituted styrene 
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TiO2 SiO2 

oxide was employed, and acetophenone was observed as the byproduct, which comes from 

the Meinwald rearrangement.32 
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Fig. 2 Preliminary recyclability evaluation of plasma immobilized catalysts based on TiO2, FeO 

and SiO2. Reaction conditions: 45 cm3 stainless‐steel autoclave, 1 equiv 5a (13.9 mmol), 0.5 g 

of immobilized catalyst (1 mol% catalyst loading), solvent‐free. Yield of 1st run was isolated 

yield, from the 2nd run, yields were determined by 1H NMR with mesitylene as internal 

standard. 

 
Glycidol33‐34 and its derivatives bearing high functionality (g‐i) were also converted into 

corresponding carbonates in excellent yields, though most of them need 24 h to complete 

the conversion. Glycidyl methacrylate35 (l) was also transformed to its carbonate at 90 °C 

without polymerization, in 95% yield. The organosilane substrate m could be obtained in 

95% yield, which serve as effective adhesion promoters in paints, inks, coatings and 

sealants.36 Notably, the catalytic protocol tolerates alkyl, halide, alkene, ether, ester, silyl 

and aryl groups. Our immobilized catalyst was also engaged in the more challenging 

cycloaddition of internal epoxides with CO2. The cyclic carbonates could be isolated with 

stereoselectivity as high as 99%, with only 1 mol% catalyst loading, the reaction of internal 

epoxides took place at 90 °C with 24 h. The cyclohexene oxide was converted into the 

corresponding carbonate in 61% yield. Only 31% yield of product was obtained from 3,4‐ 

epoxytetrahedrofuran, the unidentified brown sticky liquid covered on the surface of the 

catalyst, which comes from the decomposition of the substrate. The conversion of more 

challenging cis‐stilbene oxide led selectively to trans‐product in isolated yield of 13%, with a 

cis/trans ratio <1/99. 

TiO2 FeO SiO2 

Y
ie
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 /

 %
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Scheme 2 Catalytic suitability for various epoxides. Reaction conditions: 45 cm3 stainless‐ 

steel autoclave, 1.0 equiv 1 (13.9 mmol), 0.5 g of immobilized catalyst (1 mol% catalyst 

loading), solvent‐free. Isolated yield. a 24 h. b 90 °C. c 90 °C, 24 h. d 1.0 mL 1‐BuOH was used 

as the solvent. 

 
Since the substrate was the solid, 1.0 mL 1‐butanol was added as the solvent. The epoxidized 

methyl oleate cis‐q derived from the renewable feedstocks was also investigated under the 

respective reaction conditions, 30% yield of the carbonate could be isolated with a cis/trans 

ratio of 28/72. The reversion of stereochemistry could be explained that, in the presence of 

substituents, the reaction proceeded through the SN1‐pathway and led to the trans‐product, 

which is more thermodynamically preferred.37 

The reaction with plasma treated catalyst went smoothly, various functionalized epoxides 

were converted to the corresponding carbonates under relatively mild conditions. Then, to 

evaluate the recyclability of our immobilized catalyst, recycling experiments were conducted 

with 1,2‐butylene oxide as the substrate under 90 °C, 6 h and p(CO2) = 1.0 MPa. After each 

reaction Et2O was added, the dissolved product was separated from the catalyst, then the 

catalyst was dried and employed in next run under the standard reaction conditions. Based 
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on previous results, SiO2 was chosen as the model support. The standard catalyst treated by 

plasma with 25 min was firstly investigated. Quantitative yields were obtained for the 1st and 

2nd runs, then 81% with the 3rd run, 50% for the 4th, and 20% yield could be observed even 

after the 5th run. (Fig. 7) In the end, the mass of recovered catalyst was 85% of the original 

weight. To the best of our knowledge, this is the first report of success in recycling 

immobilized catalyst treated with plasma techniques. 
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Figure 3 Recyclability investigation with immobilized catalysts treated with various plasma 

treating time. Reaction conditions: 45 cm3 stainless‐steel autoclave, 1.0 equiv 5a (13.9 

mmol), 1.0 g of immobilized catalyst (0.010 equiv catalyst loading), solvent‐free. Yield of 1st 

run was isolated yield, from the 2nd run, yield was determined by 1H NMR with mesitylene as 

internal standard. 

Since the immobilization condition will be different according to the plasma treatment time, 

the recyclability of immobilized catalysts with 6.5 min and 39 min plasma treatment were 

also studied. As shown in Fig. 3, the recyclabilities were similar with different plasma 

treating time, the activity of the catalyst treated with 6.5 min was slightly lower may due to 

not enough fixation with plasma treatment. 

 
4 Further achivements/ benefit from the project 

Poster presentation: 

“Immobilization of P‐based organocatalysts by plasma techniques”, Y. Hu, , S. Peglow, R. 

Eckelt, A. Schulz, J. von Langermann, V. Brüser, M. Beller, U. Kragl, T. Werner*, 3. Internes P‐ 

Campus Symposium, 8.‐9. November 2017, Rostock, Deutschland. 
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“Immobilization of P‐based organocatalysts by plasma techniques”, Y. Hu, , S. Peglow, R. 

Eckelt, A. Schulz, J. von Langermann, V. Brüser, M. Beller, U. Kragl, T. Werner*, 51. 

Katalytiker Konferenz Weimar 2018, 14.–16. März 2018; Weimar, Deutschland. 

Oral presentation: 

"Plasma based immobilization of catalysts for chemical synthesis”, V. Brüser, S. Peglow, Y. 

Hu, T. Werner, M. Beller, A. Kruth, IX International Conference on Plasma Physics and Plasma 

Technology PPPT‐9, 17.‐21. September 2018; Minsk/Weißrussland. 

“Immobilization of P‐based organocatalysts by plasma techniques”, Y. Hu, , S. Peglow, R. 

Eckelt, A. Schulz, J. von Langermann, V. Brüser, M. Beller, U. Kragl, T. Werner*, Internal 

PCampus Symposium, Dummersdorf, 19.–20. November 2018, FBN, Deutschland. 

Publication: 

"Plasma based immobilization of catalysts for chemical synthesis”, V. Brüser, S. Peglow, Y. 

Hu, T. Werner, M. Beller, A. Kruth, Proceedingband IX International Conference on Plasma 

Physics and Plasma Technology PPPT‐9, 17.‐21. September 2018; Minsk/Weißrussland. 

A publication entitled “Plasma‐assisted immobilized Phosphonium Salts as Recyclable 

Catalysts for the Valorization of CO2” is currently finalized. 
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8 Appendix 
 
 

Table A1 Screening of immobilized catalyst on different supports for the conversion of 1,2‐ 

butylene oxide in heterogeneous system. 
 

 

Impregnated cat. Loading Entry Catalyst Support Plasma treating Yield 6aa / % 
   / mol% time / min  

1 7 TiO2 ‐ ‐ 0 

2 8 FeO ‐ ‐ 0 

3 9 SiO2 ‐ ‐ 0 

4 10 TiO2 ‐ 25 0 

5 11 FeO ‐ 25 0 

6 12 SiO2 ‐ 25 0 

7 13 TiO2 1 ‐ 87 

8 14 FeO 1 ‐ 78 

9 15 SiO2 1 ‐ 88 

10 16 TiO2 1 25 93 

11 17 FeO 1 25 72 

12 18 SiO2 1 25 90 

Reaction conditions: 45 cm3 stainless‐steel autoclave, 1.0 equiv 5a (13.9 mmol), 0.5 g of 

support, solvent‐free. aYields were determined by 1H NMR with mesitylene as internal 

standard. 

 
Table A2 Catalytic reaction conditions optimization for the conversion of 1,2‐butylene oxide. 

 

 

Entry T / °C p / MPa t / h Yield 6a / % 

1 90 1.0 6 99 

2 90 1.0 3 99 

3 90 0.5 6 88 

4 45 1.0 6 99 

Reaction conditions: 45 cm3 stainless‐steel autoclave, 1 equiv 5 (13.9 mmol), 0.5 g of 

immobilized catalyst (1 mol% catalyst loading), solvent‐free. Isolated yield. 


